Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ribosome profiling is a sequencing technique that provides a global picture of translation across a genome. Here, we present iRibo, a software program for integrating any number of ribosome profiling samples to obtain sensitive inference of annotated or unannotated translated open reading frames. We describe the process of using iRibo to generate a species’ translatome from a set of ribosome profiling samples using S. cerevisiae as an example.more » « less
-
The effects of amino acid insertions and deletions (InDels) remain a rather under-explored area of structural biology. These variations oftentimes are the cause of numerous disease phenotypes. In spite of this, research to study InDels and their structural significance remains limited, primarily due to a lack of experimental information and computational methods. In this work, we fill this gap by modeling InDels computationally; we investigate the rigidity differences between the wildtype and a mutant variant with one or more InDels. Further, we compare how structural effects due to InDels differ from the effects of amino acid substitutions, which are another type of amino acid mutation. We finish by performing a correlation analysis between our rigidity-based metrics and wet lab data for their ability to infer the effects of InDels on protein fitness.more » « less
-
Elucidating protein rigidity offers insights about protein conformational changes. An understanding of protein motion can help speed drug development, and provide general insights into the dynamic behaviors of biomolecules. Existing rigidity analysis techniques employ fine-grained, all-atom modeling, which has a costly run-time, particularly for proteins made up of more than 500 residues. In this work, we introduce coarse-grained rigidity analysis, and showcase that it provides flexibility information about a protein that is similar in accuracy to an all-atom modeling approach. We assess the accuracy of the coarse-grained method relative to an all-atom approach via a comparison metric that reasons about the largest rigid clusters of the two methods. The apparent symmetry between the all-atom and coarse-grained methods yields very similar results, but the coarse-grained method routinely exhibits 40% reduced run-times. The CGRAP web server outputs rigid cluster information, and provides data visualization capabilities, including a interactive protein visualizer.more » « less
An official website of the United States government
